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solution of problems of noncircular cylindrical shell vibrations with low variability; such 

vibrations require special analysis. 
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We consider the generalized cyclic displacements of holonomic mechanical 

systems with a finite number of degrees of freedom, and their application to 
integration of the equations of motion. 

N. G. Chetaev in [l] turned his attention to the formulation of problems deal- 

ing with general properties of mechanical systems and connected with the 

groups of transformations which leave the basic mechanical functions invariant. 
It was he who introduced [2] the concept of cyclic displacement of a mechan- 
ical system with smooth holonomic constraints. This concept was enlarged in 
[3] in the course of considering a particular case of motion of a mechanical 

system with three degrees of freedom. 

1. Let us consider a mechanical system with smooth holonomic constraints, and with 
h degrees of freedom. We assume that the position of the system is determined by the 
real dependent variables x1, x,, . . ., xn (n > k). The possible displacements of this 
system are determined by an intransitive, k-membered group of infinitesimal operators 

II 

i=l 

(a = 1, 2, . . . , k) 

1 

The problem of constructing the groups of possible displacements was studied in [4]. 
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The variations of the function f (t, x1, . . ., z,,) over the possible (of) and the real 
(df) displacements of the system are, respectively, 

(1.1) 

where o, and qa are the mutually independent parameters of the possible and the real 
displacements, respectively. 

The possible displacements X, satisfying the conditions 

x, (L) = 0 (X,, Xp) = 0 

were defined by Chetaev in [2] as the cyclic displacements. An example of such dis- 

placements was investigated in [S]. Replacing the Poincare parameters by the variables 

ya =aTlaq, (1.2) 

Chetaev established the canonical equations and a partial differential equation for the 
action function V , in the form: 

(1.3) 

s + H (t, XI, . . x,,, XIV, . . . , X,V) = 0 (1.4) 

k 

H = 2 qiyi -L = H (t, XI, . . . , xn, T/I, . . . , Y,) 

i=l 

v = L’ (t, 32, . . . ( zn, no, . . , znO) 

Here H is the Hamiltonian, I, = T -t- IJ is the Largangian and. [,T is the force function 
of the system. 

2. The velocities xi’ are linear functions of the variables qi, . . . , qk , therefore 
the kinetic energy T can be written in the form 

Since T, is real, we can assume without loss of generality that it is specified in sym- 
metric form, i.e. gEp = gga. The quantities T, and t.~ are independent of qla. 

Let us introduce the generalized cyclic displacements X, (S = r, . . ., k; r < k), 

satisfying the following conditions : 

1) when gij = 8ij gi (i, j = 1, . . ., k), the kinetic energy of the system can be 
reduced to the above form by means of the known transformations ; 

2l (X,7 Xi) = 0 
3) x, (8L / dQ) = 0 
4) xi x, (U) = 0 (i = 1, . . ., k; i #s) 

Fol simplicity, let us consider the case when a~ /at = 0. Using the formulas (1.2) 
we introduce the system of canonical variables I~, . . ., x,, yl, . . ., yk and the Ham- 
iltonian H. The total integral of the partial differential equation (1.4) is, according to 
the known substitution of Imshenetskii, equal to the sum v = - ht + W, where h is 
the constant term of the energy integral and W is the total integral of the equation 
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H (xl, . . ., x,,, X,W, . . . , XI, w) = h (2.1) 

The above equation is obtained from the general Jacobi energy integral in which,the 

variables yi (i = 1, . . ., k), replace the variables ?h, . . .,qk through the system (1.2), 

and yi are in turn replaced by the expressions for Xi (IV). We shall denote these trans- 
formations by an asterisk accompanying the function T,. Thus, the function H in (2.1) 

is H = Tz” - T, - U 

Ta* = Ta* (XI, . . . , X,,, xlw, . . . t x,w) = -!- 

In accordance with the canonical equations (1.3) the variations of the functions 

To + U and W over the real displacements can be expressed, by virtue of (1. l), in the 
canonical system of variables in the form 

d (To + U) = i aH x, (To + (I)} at 
a=1 a% 

i aHK,(W)}dt 
a=1 % 

Using (2.2) we can write (2.1) in the form 

(2.2) 

(2.3) 

(2.4) 

By virtue of the condition (l), in the canonical system of variables, condition (3) is 
equivalent to the condition 

X8 (L’H / ayi) = 0 (i = 1, . . ., k; s = r, . . ., k; s # i) 

The latter. together with the condition (4),enables us to obtain the following expression 

from (2.2) 
Xs Id (To + WI = X, F X, (To + U) dt 

I 1 

This makes it possible to separate a part of variables in (2.4). let us assume that 

w=iw , f WO + const 
n‘=i- 

X, (W‘) = 0 (o = 1, . . ., Ii; s -_ r, . . ., k; S + a) 

then by (2.3) we have 
k 

d?p = ~xs(ws)dt, dwo={x ,KX=(W.)}dt(c=r,=...k! ay 
aal aya 

(2.5) 
8 

k k 

dW = 2 dW, + dWo = 
s-i- 

XI (W,) + e = X, (We)) dt 
a=, 8% 

We introduce a substitution for (2.4) analogous to the Imshenetskii substitution in the 
following manner: all terms of the equation not vanishing under the displacement X, 
are assumed equal to constants 1, (s = r, . . .,k) 
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~[X~(wdl’-S)~X~(To+U)dt=l~ 
By (2.5) we have 

r~~=~~[2,~s~h~(7’.+LI)dt+2g,I~]“’dt 

The function W0 satisfies the following partial differential equation : 

r-1 

7’2* (1.1, . . . ) ii?*, XlWO, . . . ) x’r_,wo) - 2 ~X,(T,,+U) 
“=1 % 

dkh-i Is (2.6) ,<:_: 
If the variables are completely separable, i. e. r = 1, then the solution of the problem 

is obtained from the Chetaev theorem 

s, (V) = Y,, X,0 (V) = - yoo (a = 1, . . . k) 

where the last group of equations gives the law of motion in its implicit form. 
An example of generalized cyclic displacements is discussed in [3]. 
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